Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 9111, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499611

RESUMO

Vasopressin receptor 2 (V2R) mutations causing the nephrogenic syndrome of inappropriate antidiuresis (NSIAD) can generate two constitutively active receptor phenotypes. One type results from residue substitutions in several V2R domains and is sensitive to vaptan inverse agonists. The other is only caused by Arg 137 replacements and is vaptan resistant. We compared constitutive and agonist-driven interactions of the vaptan-sensitive F229V and vaptan-resistant R137C/L V2R mutations with ß-arrestin 1, ß-arrestin 2, and Gαs, using null fibroblasts reconstituted with individual versions of the ablated transduction protein genes. F229V displayed very high level of constitutive activation for Gs but not for ß-arrestins, and enhanced or normal responsiveness to agonists and inverse agonists. In contrast, R137C/L mutants exhibited maximal levels of constitutive activation for ßarrestin 2 and Gs, minimal levels for ß-arrestin 1, but a sharp decline of ligands sensitivity at all transducer interactions. The enhanced constitutive activity and reduced ligand sensitivity of R137 mutants on cAMP signaling persisted in cells lacking ß-arrestins, indicating that these are intrinsic molecular properties of the mutations, not the consequence of altered receptor trafficking. The results suggest that the two groups of NSIAD mutations represent two distinct molecular mechanisms of constitutive activation in GPCRs.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/genética , Síndrome de Secreção Inadequada de HAD/genética , Mutação , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Vasopressinas/genética , Linhagem Celular , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Humanos , Síndrome de Secreção Inadequada de HAD/metabolismo , Masculino , Domínios Proteicos , Receptores de Vasopressinas/química , beta-Arrestina 1/metabolismo , beta-Arrestina 2/metabolismo
2.
Cells ; 9(6)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486031

RESUMO

NSIAD is a rare X-linked condition, caused by activating mutations in the AVPR2 gene coding for the vasopressin V2 receptor (V2R) associated with hyponatremia, despite undetectable plasma vasopressin levels. We have recently provided in vitro evidence that, compared to V2R-wt, expression of activating V2R mutations R137L, R137C and F229V cause a constitutive redistribution of the AQP2 water channel to the plasma membrane, higher basal water permeability and significantly higher basal levels of p256-AQP2 in the F229V mutant but not in R137L or R137C. In this study, V2R mutations were expressed in collecting duct principal cells and the associated signalling was dissected. V2R-R137L and R137C mutants had significantly higher basal pT269-AQP2 levels -independently of S256 and PKA-which were reduced to control by treatment with Rho kinase (ROCK) inhibitor. Interestingly, ROCK activity was found significantly higher in V2R-R137L along with activation of the Gα12/13-Rho-ROCK pathway. Of note, inhibition of ROCK reduced the basal elevated osmotic water permeability to control. To conclude, our data demonstrate for the first time that the gain-of-function mutation of the V2R, R137L causing NSIAD, signals through an alternative PKA-independent pathway that increases AQP2 membrane targeting through ROCK-induced phosphorylation at S/T269 independently of S256 of AQP2.


Assuntos
Aquaporina 2/metabolismo , Membrana Celular/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Síndrome de Secreção Inadequada de HAD/genética , Mutação/genética , Fosfosserina/metabolismo , Receptores de Vasopressinas/genética , Transdução de Sinais , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Camundongos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Osmose , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Água/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
3.
Pflugers Arch ; 471(10): 1291-1304, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31486901

RESUMO

Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a recently identified chromosome X-linked disease associated with gain-of-function mutations of the V2 vasopressin receptor (V2R), a G-protein-coupled receptor. It is characterized by inability to excrete a free water load, hyponatremia, and undetectable vasopressin-circulating levels. Hyponatremia can be quite severe in affected male children. To gain a deeper insight into the functional properties of the V2R active mutants and how they might translate into the pathological outcome of NSIAD, in this study, we have expressed the wild-type V2R and three constitutively active V2R mutants associated with NSIAD (R137L, R137C, and the F229V) in MCD4 cells, a cell line derived from renal mouse collecting duct, stably expressing the vasopressin-sensitive water channel aquaporin-2 (AQP2). Our findings indicate that in cells expressing each active mutant, AQP2 was constitutively localized to the apical plasma membrane in the absence of vasopressin stimulation. In line with these observations, under basal conditions, osmotic water permeability in cells expressing the constitutively active mutants was significantly higher compared to that of cells expressing the wild-type V2R. Our findings demonstrate a direct link between activating mutations of the V2R and the perturbation of water balance in NSIAD. In addition, this study provides a useful cell-based assay system to assess the functional consequences of newly discovered activating mutations of the V2R on water permeability in kidney cells and to screen the effect of drugs on the mutated receptors.


Assuntos
Aquaporina 2/metabolismo , Mutação com Ganho de Função , Doenças Genéticas Ligadas ao Cromossomo X/genética , Síndrome de Secreção Inadequada de HAD/genética , Receptores de Vasopressinas/genética , Reabsorção Renal , Animais , Linhagem Celular , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Humanos , Síndrome de Secreção Inadequada de HAD/metabolismo , Camundongos , Receptores de Vasopressinas/metabolismo , Vasopressinas/metabolismo , Água/metabolismo , Equilíbrio Hidroeletrolítico
4.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2336-2346, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28923249

RESUMO

Doxorubicin (DOX) is a chemotherapic agent that is widely used to treat hematological and solid tumors. Despite its efficacy, DOX displays significant cardiac toxicity associated with cardiomyocytes death and heart failure. Cardiac toxicity is mainly associated with the ability of DOX to alter mitochondrial function. The current lack of treatments to efficiently prevent DOX cardiotoxicity underscores the need of new therapeutic approaches. Our current findings show that stimulation of cardiomyocytes with the α1-adrenergic receptor (AR) agonist phenylephrine (PE) significantly inhibits the apoptotic effect of DOX. Importantly, our results indicate that AKAP-Lbc is critical for transducing protective signals downstream of α1-ARs. In particular, we could show that suppression of AKAP-Lbc expression by infecting primary cultures of ventricular myocytes with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly impairs the ability of PE to reduce DOX-induced apoptosis. AKAP-Lbc-mediated cardiomyocyte protection requires the activation of anchored protein kinase D1 (PKD1)-dependent prosurvival pathways that promote the expression of the anti-apoptotic protein Bcl2 and inhibit the translocation of the pro-apoptotic protein Bax to mitochondria. In conclusion, AKAP-Lbc emerges as a coordinator of signals that protect cardiomyocytes against the toxic effects of DOX.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Apoptose/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Antígenos de Histocompatibilidade Menor/genética , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Lentivirus/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Fenilefrina/administração & dosagem , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
J Cell Sci ; 130(17): 2914-2925, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754689

RESUMO

The water channel aquaporin-2 (AQP2) is a major regulator of water homeostasis in response to vasopressin (VP). Dynamic trafficking of AQP2 relies on its close interaction with trafficking machinery proteins and the actin cytoskeleton. Here, we report the identification of ezrin, an actin-binding protein from the ezrin/radixin/moesin (ERM) family as an AQP2-interacting protein. Ezrin was first detected in a co-immunoprecipitation (co-IP) complex using an anti-AQP2 antibody in a proteomic analysis. Immunofluorescence staining revealed the co-expression of ezrin and AQP2 in collecting duct principal cells, and VP treatment caused redistribution of both proteins to the apical membrane. The ezrin-AQP2 interaction was confirmed by co-IP experiments with an anti-ezrin antibody, and by pulldown assays using purified full-length and FERM domain-containing recombinant ezrin. By using purified recombinant proteins, we showed that ezrin directly interacts with AQP2 C-terminus through its N-terminal FERM domain. Knocking down ezrin expression with shRNA resulted in increased membrane accumulation of AQP2 and reduced AQP2 endocytosis. Therefore, through direct interaction with AQP2, ezrin facilitates AQP2 endocytosis, thus linking the dynamic actin cytoskeleton network with AQP2 trafficking.


Assuntos
Aquaporina 2/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endocitose , Animais , Membrana Celular/metabolismo , Clatrina/metabolismo , AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/química , Cães , Regulação para Baixo , Exocitose , Técnicas de Silenciamento de Genes , Humanos , Imunoprecipitação , Células LLC-PK1 , Células Madin Darby de Rim Canino , Fosforilação , Ligação Proteica , Domínios Proteicos , Ratos , Suínos , Vasopressinas
6.
Cell Signal ; 27(10): 1984-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169957

RESUMO

Cardiac hypertrophy is a complex remodeling process of the heart induced by physiological or pathological stimuli resulting in increased cardiomyocyte size and myocardial mass. Whereas cardiac hypertrophy can be an adaptive mechanism to stressful conditions of the heart, prolonged hypertrophy can lead to heart failure which represents the primary cause of human morbidity and mortality. Among G protein-coupled receptors, the α1-adrenergic receptors (α1-ARs) play an important role in the development of cardiac hypertrophy as demonstrated by numerous studies in the past decades, both in primary cardiomyocyte cultures and genetically modified mice. The results of these studies have provided evidence of a large variety of α1-AR-induced signaling events contributing to the defining molecular and cellular features of cardiac hypertrophy. Recently, novel signaling mechanisms have been identified and new hypotheses have emerged concerning the functional role of the α1-adrenergic receptors in the heart. This review will summarize the main signaling pathways activated by the α1-AR in the heart and their functional implications in cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Receptores Adrenérgicos alfa 1/fisiologia , Animais , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Remodelação Ventricular
7.
Mol Cell Biol ; 33(1): 14-27, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23090968

RESUMO

In response to stress, the heart undergoes a pathological remodeling process associated with hypertrophy and the reexpression of a fetal gene program that ultimately causes cardiac dysfunction and heart failure. In this study, we show that A-kinase-anchoring protein (AKAP)-Lbc and the inhibitor of NF-κB kinase subunit ß (IKKß) form a transduction complex in cardiomyocytes that controls the production of proinflammatory cytokines mediating cardiomyocyte hypertrophy. In particular, we can show that activation of IKKß within the AKAP-Lbc complex promotes NF-κB-dependent production of interleukin-6 (IL-6), which in turn enhances fetal gene expression and cardiomyocyte growth. These findings provide a new mechanistic hypothesis explaining how hypertrophic signals are coordinated and conveyed to interleukin-mediated transcriptional reprogramming events in cardiomyocytes.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Quinase I-kappa B/metabolismo , Interleucina-6/metabolismo , Miócitos Cardíacos/patologia , Proteínas de Ancoragem à Quinase A/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Hipertrofia/metabolismo , Quinase I-kappa B/genética , Camundongos , Antígenos de Histocompatibilidade Menor , Mutação , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Curr Drug Targets ; 13(1): 15-27, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21777184

RESUMO

The adrenergic receptors are among the best characterized G protein-coupled receptors (GPCRs) and knowledge on this receptor family has provided several important paradigms about GPCR function and regulation. One of the most recent paradigms initially supported by studies on adrenergic receptors is that both ßarrestins and G proteincoupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. In this review we will briefly summarize the main features of ßarrestin binding to the adrenergic receptor subtypes and we will review more in detail the main proteins found to selectively interact with distinct AR subtype. At the end, we will review the main findings on oligomerization of the AR subtypes.


Assuntos
Domínios e Motivos de Interação entre Proteínas/fisiologia , Mapeamento de Interação de Proteínas/métodos , Receptores Adrenérgicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Ligação Proteica/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia
9.
Methods Enzymol ; 485: 123-38, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21050914

RESUMO

The α(1b)-adrenergic receptor (AR) was, after rhodopsin, the first G protein-coupled receptor (GPCR) in which point mutations were shown to trigger constitutive (agonist-independent) activity. Constitutively activating mutations have been found in other AR subtypes as well as in several GPCRs. This chapter briefly summarizes the main findings on constitutively active mutants of the α(1a)- and α(1b)-AR subtypes and the methods used to predict activating mutations, to measure constitutive activity of Gq-coupled receptors and to investigate inverse agonism. In addition, it highlights the implications of studies on constitutively active AR mutants on elucidating the molecular mechanisms of receptor activation and drug action.


Assuntos
Agonismo Inverso de Drogas , Mutação , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Humanos , Mutagênese Sítio-Dirigida/métodos , Estrutura Terciária de Proteína , Receptores Adrenérgicos alfa 1/química
10.
J Recept Signal Transduct Res ; 30(6): 410-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20954794

RESUMO

The α(1)-adrenergic receptor (AR) subtypes (α(1a), α(1b), and α(1d)) mediate several physiological effects of epinephrine and norepinephrine. Despite several studies in recombinant systems and insight from genetically modified mice, our understanding of the physiological relevance and specificity of the α(1)-AR subtypes is still limited. Constitutive activity and receptor oligomerization have emerged as potential features regulating receptor function. Another recent paradigm is that ß arrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. The aim of this review is to summarize our current knowledge on some recently identified functional paradigms and signaling networks that might help to elucidate the functional diversity of the α(1)-AR subtypes in various organs.


Assuntos
Isoformas de Proteínas/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Arrestinas/metabolismo , Epinefrina/metabolismo , Norepinefrina/metabolismo , Isoformas de Proteínas/genética , Receptores Adrenérgicos alfa 1/genética , beta-Arrestinas
11.
Life Sci ; 84(21-22): 713-8, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19249315

RESUMO

AIM: Alpha1-adrenergic receptors (alpha1-ARs) are classified into three subtypes: alpha1A-AR, alpha1B-AR, and alpha1D-AR. Triple disruption of alpha1A-AR, alpha1B-AR, and alpha1D-AR genes results in hypotension and produces no contractile response of the thoracic aorta to noradrenalin. Presently, we characterized vascular contractility against other vasoconstrictors, such as potassium, prostaglandin F2alpha (PGF(2alpha)) and 5-hydroxytryptamine (5-HT), in alpha1A-AR, alpha1B-AR, and alpha1D-AR triple knockout (alpha1-AR triple KO) mice. MAIN METHODS: The contractile responses to the stimulation with vasoconstrictors were studied using isolated thoracic aorta. KEY FINDINGS: As a result, the phasic and tonic contraction induced by a high concentration of potassium (20 mM) was enhanced in the isolated thoracic aorta of alpha1-AR triple KO mice compared with that of wild-type (WT) mice. In addition, vascular responses to PGF(2alpha) and 5-HT were also enhanced in the isolated thoracic aorta of alpha1-AR triple KO mice compared with WT mice. Similar to in vitro findings with isolated thoracic aorta, in vivo pressor responses to PGF(2alpha) were enhanced in alpha1-AR triple KO mice. Real-time reverse transcription-polymerase chain reaction analysis and western blot analysis indicate that gene expression of the 5-hydroxytryptamine 2A (5-HT(2A)) receptor was up-regulated in the thoracic aorta of alpha1-AR triple KO mice while the prostaglandin F2alpha receptor (FP) was unchanged. SIGNIFICANCE: These results suggest that loss of alpha1-ARs can lead to enhancement of vascular responsiveness to the vasoconstrictors and may imply that alpha1-ARs and the subsequent signaling regulate the vascular responsiveness to other stimulations such as depolarization, 5-HT and PGF(2alpha).


Assuntos
Contração Muscular/genética , Contração Muscular/fisiologia , Músculo Liso Vascular/fisiologia , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/fisiologia , Animais , Aorta Torácica/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Dinoprosta/farmacologia , Relação Dose-Resposta a Droga , Expressão Gênica/fisiologia , Marcação de Genes , Frequência Cardíaca/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serotonina/farmacologia , Vasoconstritores/farmacologia
12.
Mol Pharmacol ; 74(3): 562-73, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18523139

RESUMO

The internalization properties of the alpha1a- and alpha1b-adrenergic receptors (ARs) subtypes transiently expressed in human embryonic kidney (HEK) 293 cells were compared using biotinylation experiments and confocal microscopy. Whereas the alpha1b-AR displayed robust agonist-induced endocytosis, the alpha1a-AR did not. Constitutive internalization of the alpha1a-AR was negligible, whereas the alpha1b-AR displayed significant constitutive internalization and recycling. We investigated the interaction of the alpha1-AR subtypes with beta-arrestins 1 and 2 as well as with the AP50 subunit of the clathrin adaptor complex AP2. The results from both coimmunoprecipitation experiments and beta-arrestin translocation assays indicated that the agonistinduced interaction of the alpha1a-AR with beta-arrestins was much weaker than that of the alpha1b-AR. In addition, the alpha1a-AR did not bind AP50. The alpha1b-AR mutant M8, lacking the main phosphorylation sites in the receptor C tail, was unable to undergo endocytosis and was profoundly impaired in binding beta-arrestins despite its binding to AP50. In contrast, the alpha1b-AR mutant DeltaR8, lacking AP50 binding, bound beta-arrestins efficiently, and displayed delayed endocytosis. RNA interference showed that beta-arrestin 2 plays a prominent role in alpha1b-AR endocytosis. The findings of this study demonstrate differences in internalization between the alpha1a- and alpha1b-AR and provide evidence that the lack of significant endocytosis of the alpha1a-AR is linked to its poor interaction with beta-arrestins as well as with AP50. We also provide evidence that the integrity of the phosphorylation sites in the C tail of the alpha1b-AR is important for receptor/beta-arrestin interaction and that this interaction is the main event triggering receptor internalization.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Arrestinas/metabolismo , Endocitose , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Biotinilação , Linhagem Celular , Cricetinae , Inativação Gênica , Humanos , Imunoprecipitação , Proteínas Mutantes/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Receptores Adrenérgicos alfa 1/química , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , beta-Arrestina 2 , beta-Arrestinas
13.
J Gastrointestin Liver Dis ; 17(2): 193-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18568142

RESUMO

Obesity is an excess of fat mass. Fat mass is an energy depot but also an endocrine organ. A deregulation of the sympathetic nervous system (SNS) might produce obesity. Stress exaggerates diet-induced obesity. After stress, SNS fibers release neuropeptide Y (NPY) which directly increases visceral fat mass producing a metabolic syndrome (MbS)-like phenotype. Adrenergic receptors are the main regulators of lipolysis. In severe obesity, we demonstrated that the adrenergic receptor subtypes are differentially expressed in different fat depots. Liver and visceral fat share a common sympathetic pathway, which might explain the low-grade inflammation which simultaneously occurs in liver and fat of the obese with MbS. The neuroendocrine melanocortinergic system and gastric ghrelin are also greatly deregulated in obesity. A specific mutation in the type 4 melanocortin receptor induces early obesity onset, hyperphagia and insulin-resistance. Nonetheless, it was recently discovered that a mutation in the prohormone convertase 1/3 simultaneously produces severe gastrointestinal dysfunctions and obesity.


Assuntos
Tecido Adiposo/metabolismo , Ingestão de Alimentos/fisiologia , Síndrome Metabólica/metabolismo , Sistemas Neurossecretores/metabolismo , Obesidade/metabolismo , Sistema Nervoso Simpático/metabolismo , Humanos , Pró-Proteína Convertase 1/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores Adrenérgicos/metabolismo
14.
Obesity (Silver Spring) ; 15(9): 2181-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17890485

RESUMO

OBJECTIVE: Atrial natriuretic peptide (ANP) is a secretory hormone displaying diuretic, natriuretic, and vasorelaxant activities. Recently, its lipolytic activity has been reported. Since the expression of ANP in adipose tissue has not been documented, we used real-time reverse transcriptase polymerase chain reaction (RT-PCR) to investigate the expression of ANP in human adipose tissue and preadipocytes. RESEARCH METHODS AND PROCEDURES: RNA was extracted from the human adipose tissue of severely obese premenopausal women as well as from human preadipocytes. For human preadipocytes, two cell systems were investigated: the human preadipose immortalized (Chub-S7) cells, a well-characterized human preadipose cell line, and primary preadipocytes derived from the stromal vascular fraction of the human adipose tissue. We measured the mRNA of ANP, of corin (a transmembrane serine protease involved in the conversion of pro-ANP to ANP) and of uncoupling protein 2 (UCP2; a control gene known to be ubiquitously expressed). The expression of ANP was also investigated using immunofluorescence and radioimmunoassay in Chub-S7 cells and human primary preadipocytes in culture. RESULTS: Our results indicate that ANP and corin are expressed at the mRNA level in human adipose tissue and preadipocytes. Immunofluorescence experiments demonstrated that pro-ANP was expressed in Chub-S7 cells. In addition, ANP secretion could be measured in Chub-S7 cells and human primary preadipocytes in culture. Rosiglitazone, a selective peroxisome proliferator-activated receptor type gamma (PPAR-gamma) agonist promoting adipocyte differentiation, was found to modulate both ANP expression and secretion in preadipocytes. DISCUSSION: Our findings suggest the existence of an autocrine/paracrine system for ANP in the human adipose tissue whose implications in lipolysis and cardiovascular function need to be further explored.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fator Natriurético Atrial/metabolismo , Regulação da Expressão Gênica , Adulto , Linhagem Celular , Feminino , Humanos , Canais Iônicos/química , Microscopia de Fluorescência , Proteínas Mitocondriais/química , PPAR gama/metabolismo , Peptídeos/química , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosiglitazona , Serina Endopeptidases/metabolismo , Tiazolidinedionas/farmacologia , Proteína Desacopladora 1
15.
Proc Natl Acad Sci U S A ; 104(24): 10140-5, 2007 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-17537920

RESUMO

In response to various pathological stresses, the heart undergoes a pathological remodeling process that is associated with cardiomyocyte hypertrophy. Because cardiac hypertrophy can progress to heart failure, a major cause of lethality worldwide, the intracellular signaling pathways that control cardiomyocyte growth have been the subject of intensive investigation. It has been known for more than a decade that the small molecular weight GTPase RhoA is involved in the signaling pathways leading to cardiomyocyte hypertrophy. Although some of the hypertrophic pathways activated by RhoA have now been identified, the identity of the exchange factors that modulate its activity in cardiomyocytes is currently unknown. In this study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor activity, is critical for activating RhoA and transducing hypertrophic signals downstream of alpha1-adrenergic receptors (ARs). In particular, our results indicate that suppression of AKAP-Lbc expression by infecting rat neonatal ventricular cardiomyocytes with lentiviruses encoding AKAP-Lbc-specific short hairpin RNAs strongly reduces both alpha1-AR-mediated RhoA activation and hypertrophic responses. Interestingly, alpha1-ARs promote AKAP-Lbc activation via a pathway that requires the alpha subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as the first Rho-guanine nucleotide exchange factor (GEF) involved in the signaling pathways leading to cardiomyocytes hypertrophy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais , Proteínas de Ancoragem à Quinase A , Animais , Animais Recém-Nascidos , Linhagem Celular , Células Cultivadas , Ventrículos do Coração/citologia , Humanos , Hipertrofia , Miócitos Cardíacos/citologia , Ratos
16.
Am J Physiol Heart Circ Physiol ; 293(1): H514-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17384126

RESUMO

Attenuation of early restenosis after percutaneous coronary intervention (PCI) is important for the successful treatment of coronary artery disease. Some clinical studies have shown that hypertension is a risk factor for early restenosis after PCI. These findings suggest that alpha(1)-adrenergic receptors (alpha(1)-ARs) may facilitate restenosis after PCI because of alpha(1)-AR's remarkable contribution to the onset of hypertension. In this study, we examined the neointimal formation after vascular injury in the femoral artery of alpha(1A)-knockout (alpha(1A)-KO), alpha(1B)-KO, alpha(1D)-KO, alpha(1A)-/alpha(1B)-AR double-KO (alpha(1AB)-KO), and wild-type mice to investigate the functional role of each alpha(1)-AR subtype in neointimal formation, which is known to promote restenosis. Neointimal formation 4 wk after wire injury was significantly (P < 0.05) smaller in alpha(1AB)-KO mice than in any other group of mice, while blood pressures were not altered in any of the groups of mice after wire injury compared with those before it. These results suggest that lack of both alpha(1A)- and alpha(1B)-ARs could be necessary to inhibit neointimal formation in the mouse femoral artery.


Assuntos
Artéria Femoral/metabolismo , Artéria Femoral/patologia , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais , Túnica Íntima/metabolismo , Túnica Íntima/patologia , Antagonistas de Receptores Adrenérgicos alfa 1 , Animais , Artéria Femoral/lesões , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Am J Physiol Heart Circ Physiol ; 292(5): H2316-23, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17220188

RESUMO

Excessive proliferation of vascular wall cells underlies the development of elevated vascular resistance in hypoxic pulmonary hypertension (PH), but the responsible mechanisms remain unclear. Growth-promoting effects of catecholamines may contribute. Hypoxemia causes sympathoexcitation, and prolonged stimulation of alpha(1)-adrenoceptors (alpha(1)-ARs) induces hypertrophy and hyperplasia of arterial smooth muscle cells and adventitial fibroblasts. Catecholamine trophic actions in arteries are enhanced when other conditions favoring growth or remodeling are present, e.g., injury or altered shear stress, in isolated pulmonary arteries from rats with hypoxic PH. The present study examined the hypothesis that catecholamines contribute to pulmonary vascular remodeling in vivo in hypoxic PH. Mice genetically deficient in norepinephrine and epinephrine production [dopamine beta-hydroxylase(-/-) (DBH(-/-))] or alpha(1)-ARs were examined for alterations in PH, cardiac hypertrophy, and vascular remodeling after 21 days exposure to normobaric 0.1 inspired oxygen fraction (Fi(O(2))). A decrease in the lumen area and an increase in the wall thickness of arteries were strongly inhibited in knockout mice (order of extent of inhibition: DBH(-/-) = alpha(1D)-AR(-/-) > alpha(1B)-AR(-/-)). Distal muscularization of small arterioles was also reduced (DBH(-/-) > alpha(1D)-AR(-/-) > alpha(1B)-AR(-/-) mice). Despite these reductions, increases in right ventricular pressure and hypertrophy were not attenuated in DBH(-/-) and alpha(1B)-AR(-/-) mice. However, hematocrit increased more in these mice, possibly as a consequence of impaired cardiovascular activation that occurs during reduction of Fi(O(2)). In contrast, in alpha(1D)-AR(-/-) mice, where hematocrit increased the same as in wild-type mice, right ventricular pressure was reduced. These data suggest that catecholamine stimulation of alpha(1B)- and alpha(1D)-ARs contributes significantly to vascular remodeling in hypoxic PH.


Assuntos
Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Hipóxia/patologia , Norepinefrina/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Animais , Hipertensão Pulmonar/etiologia , Hipertrofia/metabolismo , Hipertrofia/patologia , Hipóxia/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Adrenérgicos alfa 1
18.
Biochem Pharmacol ; 73(8): 1076-83, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17125741

RESUMO

Mutations of G protein-coupled receptors (GPCR) can increase their constitutive (agonist-independent) activity. Some of these mutations have been artificially introduced by site-directed mutagenesis, others occur spontaneously in human diseases. The alpha(1B)adrenoceptor was the first GPCR in which point mutations were shown to trigger receptor activation. This article briefly summarizes some of the findings reported in the last several years on constitutive activity of the alpha(1)adrenoceptor subtypes, the location where mutations have been found in the receptors, the spontaneous activity of native receptors in recombinant as well as physiological systems. In addition, it will highlight how the analysis of the pharmacological and molecular properties of the constitutively active adrenoceptor mutants provided an important contribution to our understanding of the molecular mechanisms underlying the mechanism of receptor activation and inverse agonism.


Assuntos
Receptores Adrenérgicos alfa 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1 , Antagonistas Adrenérgicos alfa/farmacologia , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Cricetinae , Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Estrutura Secundária de Proteína , Receptores Adrenérgicos alfa 1/química , Receptores Adrenérgicos alfa 1/genética
19.
J Biol Chem ; 281(7): 4354-63, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16352594

RESUMO

Using the yeast two-hybrid system, we identified ezrin as a protein interacting with the C-tail of the alpha1b-adrenergic receptor (AR). The interaction was shown to occur in vitro between the receptor C-tail and the N-terminal portion of ezrin, or Four-point-one ERM (FERM) domain. The alpha1b-AR/ezrin interaction occurred inside the cells as shown by the finding that the transfected alpha1b-AR and FERM domain or ezrin could be coimmunoprecipitated from human embryonic kidney 293 cell extracts. Mutational analysis of the alpha1b-AR revealed that the binding site for ezrin involves a stretch of at least four arginines on the receptor C-tail. The results from both receptor biotinylation and immunofluorescence experiments indicated that the FERM domain impaired alpha1b-AR recycling to the plasma membrane without affecting receptor internalization. The dominant negative effect of the FERM domain, which relies on its ability to mask the ezrin binding site for actin, was mimicked by treatment of cells with cytochalasin D, an actin depolymerizing agent. A receptor mutant (DeltaR8) lacking its binding site in the C-tail for ezrin displayed delayed receptor recycling. These findings identify ezrin as a new protein directly interacting with a G protein-coupled receptor and demonstrate the direct implication of ezrin in GPCR trafficking via an actin-dependent mechanism.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Receptores Adrenérgicos alfa 1/metabolismo , Actinas/fisiologia , Sítios de Ligação , Linhagem Celular , Citocalasina D/farmacologia , Proteínas do Citoesqueleto/química , Humanos , Microscopia Confocal , Estrutura Terciária de Proteína , Transporte Proteico , Receptores Adrenérgicos alfa 1/química , Receptores Acoplados a Proteínas G/metabolismo
20.
Trends Pharmacol Sci ; 26(12): 618-24, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16260046

RESUMO

The idea that a receptor can produce signalling without agonist intervention and that several antagonists can be 'active' in repressing such spontaneous activity is contained in the concept of ligand-induced conformational changes. Yet, this idea was neglected by pharmacologists for many years. In this article, we review the events that brought inverse agonism and constitutive activity to general attention and made this phenomenon a topic of current research. We also suggest a classification of antagonists based on the cooperativity that links their primary site of interaction with other functional domains of the receptor.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Humanos , Ligantes , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...